Kinetic growth walks and trails on oriented square lattices: Hull percolation and percolation hulls

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 223113
(http://iopscience.iop.org/0305-4470/22/15/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on $31 / 05 / 2010$ at $13: 44$

Please note that terms and conditions apply.

Kinetic growth walks and trails on oriented square lattices: hull percolation and percolation hulls

S S Manna and A J Guttmann
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia

Received 1 September 1988

Abstract

We have studied kinetic growth walks on the Manhattan lattice and kinetic growth trails on the L lattice. We find that the directional properties of these lattices prevent the kinetic growth walks from being trapped (except at the origin). As a consequence, KGWs are found to be in the SKw universality class for these lattices. Extensive numerical calculations support this fact. Moreover it has been shown that the recently introduced hull percolation is equivalent to the kinetic growth walks on the Manhattan lattice, and the bond percolation hull on the square lattice at the percolation threshold is equivalent to the kinetic growth trails on the L lattice. Our numerical estimates agree nicely with the original estimates, and thus support the equivalence.

1. Introduction

The 'hull' of a percolation cluster is defined as the set of vacant nearest-neighbouring bonds of the cluster that can be joined by a continuous path from infinity without crossing the cluster. Mandelbrot (1982) introduced this term to describe the external perimeter of a cluster. The hull can be considered as the surface of a cluster and thus it may be related to the surface energy.

Several attempts have been made to estimate the fractal dimension D_{h} of the hull at the percolation threshold. It has been conjectured that D_{h} is related to the percolation correlation length exponent ν by $D_{\mathrm{h}}=1+1 / \nu$ (Sapoval et al 1985) (in two dimensions this gives $D_{\mathrm{h}}=\frac{7}{4}$). Ziff et al (1984) introduced a random walk algorithm to generate the hull of the site percolation cluster (without generating the actual percolation cluster). Gunn and Ortuno (1985) devised another walk algorithm which represents the hull of the bond percolation cluster on the square lattice at the percolation threshold. Numerical studies (Voss 1984, Weinrib and Trugman 1985, Ziff 1986, Grassberger 1986) confirmed this conjecture in the two-dimensional case. Finally Saleur and Duplantier (1987) obtained the exact value of the hull dimension $D_{h}=\frac{7}{4}$ by mapping the two-dimensional percolation problem into a solvable Coulomb gas problem.

Self-avoiding walks (SAW) (de Gennes 1979) form a subset of random walks in which no walk has visited a site more than once. These walks carry equal weights, as they are random walks. They are used as a model of linear polymers in dilute solution with excluded volume interaction. However, to represent a growing polymer the weight of a walk configuration should depend on the configuration itself. This is because at every stage of growth, the number of options determines the weight. Kinetic growth walks (KGw) (Majid et al 1984, Hemmer and Hemmer 1984, Lyklema and Kremer 1984) are an example of such growing walks. They consist of the same set of walks
as saws but each has a weight depending on its growth process. Specifically in this walk, the walker first determines the unvisited nearest-neighbour sites and then selects one of them randomly. The weight of each step is $1 /$ (number of allowed sites), while the weight of a walk is the product of the individual step weights. kgws belong to the same universality class as ordinary saws (Peliti 1984, Pietronero 1985, Lyklema and Kremer 1986). Weinrib and Trugman (1985) introduced another growing walk and called it the smart kinetic walk (skw). Unlike saws and kgws, this walk is never trapped. This makes skws create a new universality class, distinct from saws. In this case the walker first determines the unvisited neighbouring sites. From these sites only those which will never lead to any trapping situation are permitted. One of these sites is then chosen randomly for the next step. skw rings in which the initial and final sites are the same are shown to corresponding precisely to the hull of the site percolation clusters on the triangular lattice at the percolation threshold on the dual honeycomb lattice (Weinrib and Trugman 1985). skws are also known by the alternative name indefinitely growing self-avoiding walks (IGSAw) introduced by Kremer and Lyklema (1985).

In this paper we consider kgws on the Manhattan lattice and kinetic growth trails (kgts) on the L lattice. We see that because of the directional properties of these lattices, KGws and KGTs on these lattices behave similarly to skws, i.e. they are never trapped. The 'smartness' is thus a property of the lattice. In $\S 2$ we show that kinetic growth walks on the Manhattan lattice are equivalent to the recently introduced hull percolation problem. In $\S 3$ we show that kinetic growth trails on the L lattice are equivalent to the bond percolation hulls on the square lattice at the percolation threshold. Section 4 contains our conclusion.

2. Kinetic growth walks on the Manhattan lattice and hull percolation

Recently Roux et al (1988) introduced a problem of random tiling in two dimensions that generates lines which are hulls of a 'non-standard' percolation model and called this problem 'hull percolation'. It was shown that these lines obey the same statistics as hulls of ordinary percolation clusters. In that model they used tiles of two different types as shown in figure $1(a)$. These are squares which have at the opposite corners quarters of a circle with radius equal to half of the length of the square and centred on opposite vertices. On one square the circles occupy left-top and right-bottom corners and on the other square they are placed at right-top and left-bottom corners. Now on a large square lattice every small square is filled with one of these two tiles with equal probability. By construction, the circles on the tiles at adjacent squares (squares having an edge common) form continuous lines. As a result, the whole lattice is filled up with closed lines of different lengths and open lines which both start and end at infinity.

One such single line can be generated by deciding the orientation of the squares with equal probability only along the line being generated. When an already visited square is reached the line is continued through the remaining unvisited arc of the square and for this step no new decision needs to be taken as it is pre-ordained. Therefore the generating line has two possible options when a new square is reached, and only one option to continue when a previously visited square is encountered. Once one arc is traversed in a certain direction, the other arc will be traversed in the opposite direction, by construction. As a result, when such a path starts, its starting direction determines the directions in which all other lattice edges will be traversed.

(a)

(c)

(e)

(b)

(d)

Figure 1. (a) Two tiles with circles in opposite corners. (b) Generation of a single line by the hull percolation process. Once it is started, the directions (inward or outward) in which all other bonds will be crossed is determined. (c) The possible stepping directions at each bond are shown. (d) The underlying square lattice is deleted and the possible options are retained. The directions are the same as those on the Manhattan lattice. (e) The Manhattan lattice: alternate rows (or columns) parallel, adjacent rows (or columns) antiparallel.

Two opposite sides of a square are crossed in the outward direction while the other two sides are crossed in the inward direction (see figure $1(b)$). Each of these sides has two possible directions of crossing (see figure $1(c)$). Now if we consider only these directions and forget the underlying lattice what we get is figure $1(d)$. From this figure we see that the possible options are arranged exactly as allowed paths on a Manhattan lattice.

On a Manhattan lattice alternate rows (or columns) are parallel, and adjacent rows (or columns) are antiparallel (see figure $1(e)$). Self-avoiding walks on the Manhattan lattice were first studied by Malakis (1975). Numerical studies on this problem suggested that these walks belong to the same universality class as that of the ordinary saws (Malakis 1975, Enting and Guttmann 1985). When a self-avoiding walker on this lattice visits a neighbouring site to its previously visited path a cage is formed. On the square lattice the walker has to be 'smart' enough to find a path which will prevent it entering the cage. On the Manhattan lattice this is automatic. As two adjacent rows (or columns) are antiparallel, the walker has only one option for the next step which directs the walk outward. Because of this property, a kgw will not normally be trapped. The only situation in which this walker can be trapped is at a neighbouring site of the starting position, in which case it forms a loop. As a result, kgws on the Manhattan lattice are also 'smart', and it is the directional property of the lattice which is responsible for this behaviour. We expect that unlike kgws on regular lattices kgws on the Manhattan lattice should behave in the same way as skws.

Therefore we see that for hull percolation and kgws on the Manhattan lattice, the generating line and the walker have two options in general, except when they fall on a site adjacent to a previously visited site, when there is only one option. They are never trapped except at the origin. From these similarities, we conclude that hull percolation and kows on the Manhattan lattice are the same.

To establish this conclusion on a stronger basis we have studied this walk extensively by numerical methods. We enumerated exactly ordinary saws and kGws on the Manhattan lattice up to 37 steps (see table 1). For ordinary saws this is nine terms further than the series data available in the literature (Malakis 1975). We analysed the series by the method of differential approximants, constructing first order inhomogeneous differential approximants precisely as described in Guttmann (1987). To save space we do not give our dozens of tables of data, but just report the conclusions.

For the sAw generating function, we observe that, as the number of terms increases, so do the estimates of x_{c} and γ. Using most or all terms gives estimates $x_{\mathrm{c}}=0.57682$ and $\gamma \geqslant 1.330$. Assuming that the increasing estimates of γ have as their limit $\gamma=\frac{43}{32}=$ 1.34375 , which is the γ value for saws on regular lattices, we find $x_{c} \approx 0.57693$. This is in agreement with the earlier estimate of Enting and Guttmann (1985). The sum of the squared end-to-end distance series gives $x_{c}=0.57678, \gamma+2 \nu=2.812$. Again, there is an increasing trend of x_{c} and γ values with increasing numbers of terms. With $x_{\mathrm{c}}=0.57693$, the (biased) estimate of $\gamma+2 \nu$ increases to 2.840 . With $\gamma=\frac{43}{32}$, this yields $\nu=0.748$. The mean square end-to-end distances $\left\langle R_{N W}^{2}\right\rangle$ for kGws weighted by the individual configuration weights were analysed similarly, using the fact that the 'critical point' of the generating function $\Sigma\left\langle R_{N W}^{2}\right\rangle x^{n}$ is at 1 . In this way, we obtained an exponent of 2.152 , hence $\nu_{\mathrm{KGW}}=0.576$. All exponent estimates are uncertain in the last quoted digit. The fourth column of table 1 gives the series data for the sum of the weights of all N-step KGW configurations, which we denote w_{N}.

We have also studied kgws by Monte Carlo methods in two different ways. We simulated one million configurations for each of walk lengths $N=16,20,24,32,40$,

Table 1. Series data for the number of distinct configurations (C_{N}), sum of the squares of end-to-end distances (R_{N}^{2}) for SAWS, the mean square end-to-end distances ($\left.\left\langle R_{N W}^{2}\right\rangle\right)$, and the total weight (W_{N}) for KGws on the Manhattan lattice.

N	C_{N}	R_{N}^{2}	$\left\langle R_{N W}^{2}\right\rangle$	W_{N}
1	1	1	$1.0000000000 \mathrm{E}+00$	$5.0000000000 \mathrm{E}-01$
2	2	6	$3.0000000000 \mathrm{E}+00$	$5.0000000000 \mathrm{E}-01$
3	4	20	$5.0000000000 \mathrm{E}+00$	$5.0000000000 \mathrm{E}-01$
4	7	56	$7.2500000000 \mathrm{E}+00$	$5.0000000000 \mathrm{E}-01$
5	13	141	$9.5000000000 \mathrm{E}+00$	$5.0000000000 \mathrm{E}-01$
6	24	328	$1.1500000000 \mathrm{E}+01$	$5.0000000000 \mathrm{E}-01$
7	44	732	$1.3562500000 \mathrm{E}+01$	$5.0000000000 \mathrm{E}-01$
8	77	1584	$1.6241935483 \mathrm{E}+01$	$4.8437500000 \mathrm{E}-01$
9	139	3339	$1.8451612903 \mathrm{E}+01$	$4.8437500000 \mathrm{E}-01$
10	250	6894	$2.0625000000 \mathrm{E}+01$	$4.8437500000 \mathrm{E}-01$
11	450	14018	$2.2826612903 \mathrm{E}+01$	$4.8437500000 \mathrm{E}-01$
12	788	28132	$2.5672520661 \mathrm{E}+01$	$4.7265625000 \mathrm{E}-01$
13	1403	55819	$2.7971074380 \mathrm{E}+01$	$4.7265625000 \mathrm{E}-01$
14	2498	109668	$3.0243285123 \mathrm{E}+01$	$4.7265625000 \mathrm{E}-01$
15	4447	213711	$3.2502582644 \mathrm{E}+01$	$4.7265625000 \mathrm{E}-01$
16	7782	413520	$3.5612645348 \mathrm{E}+01$	4.6191406250 E-01
17	13769	795041	$3.7981104651 \mathrm{E}+01$	$4.6191406250 \mathrm{E}-01$
18	24363	1519632	$4.0313557082 \mathrm{E}+01$	$4.6191406250 \mathrm{E}-01$
19	43106	2890050	$4.2647628171 \mathrm{E}+01$	$4.6191406250 \mathrm{E}-01$
20	75396	5471864	$4.5891307276 \mathrm{E}+01$	$4.5305633544 \mathrm{E}-01$
21	132865	10317249	$4.8307150194 \mathrm{E}+01$	$4.5305633544 \mathrm{E}-01$
22	234171	19378344	$5.0701545475 \mathrm{E}+01$	$4.5305633544 \mathrm{E}-01$
23	412731	36273795	$5.3094763021 \mathrm{E}+01$	$4.5305633544 \mathrm{E}-01$
24	721433	67690580	$5.6484668808 \mathrm{E}+01$	$4.4524669647 \mathrm{E}-01$
25	1267901	125950933	$5.8950609906 \mathrm{E}+01$	$4.4524669647 \mathrm{E}-01$
26	2228666	233715516	$6.1398172690 \mathrm{E}+01$	$4.4524669647 \mathrm{E}-01$
27	3917654	432618758	$6.3843998795 \mathrm{E}+01$	$4.4524669647 \mathrm{E}-01$
28	6843596	798985468	$6.7330375464 \mathrm{E}+01$	$4.3849623203 \mathrm{E}-01$
29	12004150	1472443438	$6.9840327877 \mathrm{E}+01$	$4.3849623203 \mathrm{E}-01$
30	21059478	2708024388	$7.2334114264 \mathrm{E}+01$	$4.3849623203 \mathrm{E}-01$
31	36947904	4971153360	$7.4826243431 \mathrm{E}+01$	$4.3849623203 \mathrm{E}-01$
32	64506130	9109787516	$7.8413425632 \mathrm{E}+01$	$4.3247096426 \mathrm{E}-01$
33	112983428	16666330020	$8.0963510414 \mathrm{E}+01$	$4.3247906426 \mathrm{E}-01$
34	197921386	30442830024	$8.3499614208 \mathrm{E}+01$	$4.3247096426 \mathrm{E}-01$
35	346735329	55525884185	$8.6033992446 \mathrm{E}+01$	$4.3247096426 \mathrm{E}-01$
36	605046571	101137051948	$8.9702393834 \mathrm{E}+01$	$4.2707771644 \mathrm{E}-01$
37	1058544744	183972829656	$9.2289392120 \mathrm{E}+01$	$4.2707771644 \mathrm{E}-01$

$48, \ldots, 320,384,512$. We fit the mean square end-to-end distances $\left\langle R_{N}^{2}\right\rangle$ to a form $N^{2 \nu_{\text {KGW }}}$. A $\log -\log$ plot of $\left\langle R_{N}^{2}\right\rangle$ against N gives the value of $\nu_{\mathrm{KGW}}=0.573$ (see figure 2). In the second method we study kinetic growth walk loops. On an $L \times L$ lattice (L even) the walker starts from a site near the centre and walking is continued until it revists the origin. With toroidal boundary conditions on this lattice we considered those walk configurations which have visited the four boundaries at least once. The lattice sizes were $L=16,20,24,32,40,48, \ldots, 160,192,256$, and the number of configurations at each size was varied from 50000 to 100000 . We fitted the average loop length $\left\langle P_{L}\right\rangle$ to a form $\left\langle P_{L}\right\rangle \sim L^{D_{\text {KGw }}}$ where $D_{\text {KGw }}$ denotes the fractal dimension of the kgws. A $\log -\log$ plot of $\left\langle P_{L}\right\rangle$ against L gives a value of $D_{\text {KGW }}=1.74$ (see figure 2).

Figure 2. On a $\log -\log$ plot, points denoted by (O) correspond to $\left\langle P_{L}\right\rangle$ for KGw on the Manhattan lattice, points denoted ($)$ correspond to $\left\langle P_{L}\right\rangle$ against L for KGT on the L lattice, points denoted (Δ) correspond to $\left\langle R_{N}^{2}\right\rangle$ against N for KGW on the Manhattan lattice, while points denoted (\mathbf{A}) correspond to $\left\langle R_{N}^{2}\right\rangle$ against N for KGT on the L lattice.

We have also studied indefinitely growing self-avoiding walks on the Manhattan lattice up to a walk length $N=36$. The number of distinct configurations C_{N} and the mean square end-to-end distances $\left\langle R_{N W}^{2}\right\rangle$ are given in table 2 . We have analysed these in the same manner as we analysed the Manhattan lattice data. Here too we found a steady, increasing trend of estimates of x_{c} and γ with the number of coefficients used. The last entries gave $x_{\mathrm{c}}=0.57684$ and $\gamma=1.333$. Assuming $\gamma=\frac{43}{32}$ as above gave $x_{c}=0.57692$. Analysis of the generating function $\Sigma\left\langle R_{N W}^{2}\right\rangle x^{n}$ biased at $x_{c}=1$ gave $\nu=0.566$. To confirm that the exponents $\nu_{\mathrm{KGW}}($ Manhattan $)=\nu_{\mathrm{IGSAW}}$ (Manhattan) we studied the ratio $r_{n}=\left\langle R_{N W}^{2}\right\rangle_{\text {KGW }} /\left\langle R_{N W}^{2}\right\rangle_{\text {IGSAW }}$ using the method of Guttmann (1985). Assuming $r_{n} \sim N^{x}$, we first form the sequence $\phi_{N}=\ln \left(r_{N} / r_{N-4}\right) / \ln (N / N-4)$) which gives estimates of the exponent x, and accounts for the four-term periodicity of terms associated with the Manhattan lattice. Linear extrapolants of the squence ϕ_{N} are given by the sequence θ_{N}, defined by $\theta_{N}=\left[N \phi_{N}-(N-4) \phi_{N-4}\right] / 4$. From these sequences we estimate $|x|$ to be less than 0.004 . This shows convincingly that KGws on the Manhattan lattice belong to the skw universality class.

3. Kinetic growth trails on the L lattice and percolation hull

Gunn and Ortuno (1985) studied a model of deterministic classical dynamics in a random environment and related it to a generalised form of percolation. The model is defined as follows. On a square lattice, a rotation matrix $R(\theta)$ is associated with each site. The angle of rotation θ may take four different values namely $0, \pi / 2, \pi$ and $-\pi / 2$. The angular variables at different sites are assigned randomly from a probability distribution $p(\theta)$. Random walks are considered on such a lattice. The

Table 2. Series data for the number of distinct configurations (C_{N}) and the mean square end-to-end distances ($\left.\left\langle R_{N W}^{2}\right\rangle\right)$ for igSaws on the Manhattan lattice.

N	C_{N}	$\left\langle R_{\text {NW }}^{2}\right\rangle$
1	1	$1.00000000000 \mathrm{E}+00$
2	2	$3.00000000000 \mathrm{E}+00$
3	4	$5.00000000000 \mathrm{E}+00$
4	7	$7.25000000000 \mathrm{E}+00$
5	13	$9.50000000000 \mathrm{E}+00$
6	24	$1.15000000000 \mathrm{E}+01$
7	43	$1.36875000000 \mathrm{E}+01$
8	77	$1.60156250000 \mathrm{E}+01$
9	139	$1.82187500000 \mathrm{E}+01$
10	249	$2.04257812500 \mathrm{E}+01$
11	443	$2.27500000000 \mathrm{E}+01$
12	786	$2.51035156250 \mathrm{E}+01$
13	1400	$2.74433593750 \mathrm{E}+01$
14	2486	$2.97775878906 \mathrm{E}+01$
15	4395	$3.21513671875 \mathrm{E}+01$
16	7758	$3.45814208984 \mathrm{E}+01$
17	13732	$3.70024414062 \mathrm{E}+01$
18	24251	$3.94053649902 \mathrm{E}+01$
19	42710	$4.18533477783 \mathrm{E}+01$
20	75154	$4.43403472900 \mathrm{E}+01$
21	132487	$4.68166046142 \mathrm{E}+01$
22	233173	$4.92884845733 \mathrm{E}+01$
23	409617	$5.17950115203 \mathrm{E}+01$
24	719157	$5.43308591842 \mathrm{E}+01$
25	1264303	$5.686174154283+01$
26	2219916	$5.93903857469 \mathrm{E}+01$
27	3892603	$6.19467437863 \mathrm{E}+01$
28	6822808	$6.45284478217 \mathrm{E}+01$
29	11970965	$6.71073772311 \mathrm{E}+01$
30	20983162	$6.96847166828 \mathrm{E}+01$
31	36742831	$7.22861290723 \mathrm{E}+01$
32	64319064	$7.49094314500 \mathrm{E}+01$
33	112682333	$7.75308726746 \mathrm{E}+01$
34	197256386	$8.01520849294 \mathrm{E}+01$
35	345033765	$8.27941169412 \mathrm{E}+01$
36	603376033	$8.54552128108 \mathrm{E}+01$

walker starts from an arbitrarily chosen site of the lattice with an arbitrarily chosen direction. At every site visited by the random walker the rotation matrix at that site rotates the incoming direction into the outgoing direction. These trajectories are either infinite (i.e. starting and ending at infinity) or cyclic.

Consider the particular case of the probability distribution $P(\pi / 2)=P(-\pi / 2)=\frac{1}{2}$ and $P(0)=P(\pi)=0$. The paths generated by this distribution are the perimeters of bond percolation clusters on the square lattice at the percolation threshold. The argument for this result is outlined by Gunn and Ortuno (1985). Paths generated by the above probability distribution must turn left or right at each step. Any site on such a path may be revisited only by a step in the same direction (but opposite sense) as the previously visiting step. If barriers are drawn diagonally across the sites visited by the trajectory, then the cluster of barriers enclosed by the trajectories represent the

Figure 3. (a) The path of a random walk generated by the algorithm of Gunn and Ortuno (thin line with arrows on it) which is the perimeter of the bond percolation cluster (bold line). (b) The L lattice: every bond on a path is at right angles to its predecessor.
percolation clusters at the percolation threshold, and the trajectory is its hull (see figure $3(a)$). A single such trajectory can be generated on a pure square lattice by a random walker which turns either left or right at every step and remembers the direction turned at every point. When a previously visited site is revisited, the same rotation is made as at the previous visit. Walking is continued until it terminates by revisiting the starting step. In this case the walker always has two options for the next step, except when it revisits a site, in which case it has only one option. Grassberger (1986) used this method to estimate the fractal dimension of the percolatuion hull, and obtained $D_{\mathrm{h}}=1.750 \pm 0.002$.

A lattice trail is a random walk in which no bond of the lattice is visited twice (Malakis 1975). It has been seen that these walks belong to the universality class of ordinary saws (Malakis 1975, Guttmann and Osborn 1988, Guttmann and Manna 1989). In kinetic growth trails the walker first determines the unvisited bonds emanating from its present position, and then chooses one of them randomly. This walk has been studied under a different name as the growing self-avoiding trail and was seen to belong to a different universality class from ordinary saws or lattice trails (Lyklema 1985).

Consider now an L lattice as shown in figure $3(b)$. It is a square lattice in which every bond on a path must be at right angles to its predecessor. kgts on this lattice will satisfy the following properties: they will turn left or right at every step, visit a site at most twice and stop when there is no option for the next step (this happens only at the origin). These are exactly the same properties as the hull of a bond percolation cluster has on square lattice at the percolation threshold as described above. Therefore kinetic growth trails on the L lattice should obey the same statistics as that of the bond percolation hulls on the square lattice.

To establish this equivalence numerically we enumerated exactly ordinary trails and kinetic growth trails on the L lattice up to 37 steps (see table 3). Malakis (1976) pointed out that there is a one-to-one mapping from the set of N step trails on the L lattice on to the set of $(N-1)$-step saws on the Manhattan lattice. We find that C_{N}

Table 3. Series data for the sum of the squares of end-to-end distances (R_{N}^{2}) for SAws and the mean square end-to-end distances $\left(\left\langle R_{N W}^{2}\right\rangle\right)$ for KGTs on the L lattice.

N	R_{N}^{2}	$\left\langle R_{N W}^{2}\right\rangle$
1	1	$1.0000000000 \mathrm{E}+00$
2	4	$2.0000000000 \mathrm{E}+00$
3	12	$3.0000000000 \mathrm{E}+00$
4	32	$4.0000000000 \mathrm{E}+00$
5	78	$5.0000000000 \mathrm{E}+00$
6	180	$6.0000000000 \mathrm{E}+00$
7	400	$7.0000000000 \mathrm{E}+00$
8	864	$8.0625000000 \mathrm{E}+00$
9	1818	$9.3870967741 \mathrm{E}+00$
10	3756	$1.0451612903 \mathrm{E}+01$
11	7644	$1.1556451612 \mathrm{E}+01$
12	15360	$1.2649193548 \mathrm{E}+01$
13	30504	$1.4074380165 \mathrm{E}+01$
14	60012	$1.5212809917 \mathrm{E}+01$
15	117108	$1.6342975206 \mathrm{E}+01$
16	226912	$1.7468491735 \mathrm{E}+01$
17	436764	$1.9040169133 \mathrm{E}+01$
18	835940	$2.0206131078 \mathrm{E}+01$
19	1591790	$2.1369318181 \mathrm{E}+01$
20	3017408	$2.2536898784 \mathrm{E}+01$
21	5695448	$2.4169408753 \mathrm{E}+01$
22	10709604	$2.5365786504 \mathrm{E}+01$
23	20068182	$2.6560960207 \mathrm{E}+01$
24	37487152	$2.7756160222 \mathrm{E}+01$
25	69816450	$2.9463088621 \mathrm{E}+01$
26	129674484	$3.0686571352 \mathrm{E}+01$
27	240246868	$3.1908101204 \mathrm{E}+01$
28	444079488	$3.3129847255 \mathrm{E}+01$
29	819036168	$3.4884231561 \mathrm{E}+01$
30	1507514552	$3.6131213039 \mathrm{E}+01$
31	2769437372	$3.7375807005 \mathrm{E}+01$
32	5078729888	$3.8621131263 \mathrm{E}+01$
33	9297786596	$4.0425237924 \mathrm{E}+01$
34	16994815856	$4.1693308319 \mathrm{E}+01$
35	31017310020	$4.2959367751 \mathrm{E}+01$
36	56530874800	$4.4225712589 \mathrm{E}+01$
37	102891837550	$4.6069856278 \mathrm{E}+01$

for trails on the L lattice is twice C_{N-1} for saws on the Manhattan lattice. The data for the sum of the mean square end-to-end distances (R_{N}^{2}) was analysed as above. With a critical point of 0.57692 , we find $2 \nu+\gamma=2.844$, and hence the value of ν is 0.751 . The generating function for the mean square end-to-end distances $\left(\left\langle R_{N W}^{2}\right\rangle\right)$ for kinetic growth trails weighted by the weights of the configurations was analysed similarly, biased at $x_{c}=1$, and we obtained the value of $\nu_{\mathrm{KGT}}=0.578$. We find the weights w_{N} for trails on the L lattice to be exactly equal to w_{N-1} for saws on the Manhattan lattice, reflecting the known mapping between those two problems (Malakis 1975).

In a Monte Carlo study of kinetic growth trails, we simulated one million configurations for walks of length $N=16,20,24,32,40,48, \ldots, 320,384,512$. We fitted the mean square end-to-end distances $\left\langle R_{N}^{2}\right\rangle$ to a form $N^{2 \nu_{\text {KGW }}}$. A log-log plot of $\left\langle R_{N}^{2}\right\rangle$
against N gave the value of $\nu_{\mathrm{KGT}}=0.576$ (see figure 2). Utilising a second method, we studied kinetic growth trail loops in the same way as kinetic growth walks. The lattice size was varied as $L=16,20,24,32,40,48, \ldots, 160,192,256$ and the number of configurations were varied from 20000 to 100000 . We fitted the average loop length $\left\langle P_{L}\right\rangle$ to a form $\left\langle P_{L}\right\rangle \sim L^{D_{\mathrm{KGT}}}$. A log-log plot of $\left\langle P_{L}\right\rangle$ against L gives a value of $D_{\mathrm{KGT}}=1.77$ (see figure 2).

4. Conclusion

In this paper we have studied kinetic growth walks on the Manhattan lattice and kinetic growth trails on the L lattice. Because of the directional properties of these lattices, these walks are never trapped except at the origin of the lattice. Therefore these walks are expected to belong to the smart kinetic walk universality class rather than to the ordinary saw universality class. Extensive numerical calculations by both exact enumeration and Monte Carlo methods show strong evidence that these walks indeed belong to the skw universality class. Moreover it has been shown that the recently introduced hull percolation is equivalent to kinetic growth walks on the Manhattan lattice and the hull of bond percolation clusters on the square lattice at the percolation threshold is equivalent to kinetic growth trails on the L lattice.

References

de Gennes P G 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press)
Enting I G and Guttmann A J 1985 J. Phys. A: Math. Gen. 181007
Grassberger P 1986 J. Phys. A: Math. Gen. 192675
Gunn J M F and Ortuno M 1985 J. Phys. A: Math. Gen. 18 L1095
Guttmann A J and Manna S S 1989 J. Phys. A: Math. Gen. 22 in press

- 1987 J. Phys. A: Math. Gen. 201839

Guttmann A J and Manna S S 1988 preprint
Guttmann A J and Osborn T R 1988 J. Phys. A: Math. Gen. 21513
Hemmer S and Hemmer P C 1984 J. Chem. Phys. 81584
Kremer K and Lyklema J W 1985 Phys. Rev. Lett. 54267
Lyklema J W 1985 J. Phys. A: Math. Gen. 18 L617
Lyklema J W and Kremer K 1984 J. Phys. A: Math. Gen. 17 L691

- 1986 J. Phys. A: Math. Gen. 19275

Majid I, Jan N, Coniglio A and Stanley H E 1984 Phys. Rev. Lett 521257
Malakis A 1975 J. Phys. A: Math. Gen. 81885

- 1976 J. Phys. A: Math. Gen. 91283

Mandelbrot B B 1982 The Fractal Geometry of Nature (San Francisco: Freeman)
Peliti L 1984 J. Physique. Lett. 45 L925
Pietronero L 1985 Phys. Rev. Lett. 552025
Roux S, Guyon E and Sornette D 1988 J. Phys. A: Math. Gen. 21 L475
Saleur H and Duplantier B 1987 Phys. Rev. Lett. 582325
Sapoval B, Rosso M and Gouyet J F 1985 J. Physique. Lett. 46 L149
Voss R F 1984 J. Phys. A: Math. Gen. 17 L373
Weinrib A and Trugman S A 1985 Phys. Rev. B 312993
Ziff R M 1986 Phys. Rev. Lett. 56545
Ziff R M, Cummings P T and Stell G 1984 J. Phys. A: Math. Gen. 173009

