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J .  Phys. A: Math. Gen. 22 (1989) 3113-3122. Printed in the UK 

Kinetic growth walks and trails on oriented square lattices: hull 
percolation and percolation hulls 

S S Manna and A J Guttmann 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, Australia 

Received 1 September 1988 

Abstract. We have studied kinetic growth walks on the Manhattan lattice and kinetic 
growth trails on the L lattice. We find that the directional properties of these lattices 
prevent the kinetic growth walks from being trapped (except at the origin). As a con- 
sequence, KGWS are found to be in the SKW universality class for these lattices. Extensive 
numerical calculations support this fact. Moreover it has been shown that the recently 
introduced hull percolation is equivalent to the kinetic growth walks on the Manhattan 
lattice, and the bond percolation hull on the square lattice at the percolation threshold is 
equivalent to the kinetic growth trails on the L lattice. Our numerical estimates agree 
nicely with the original estimates, and thus support the equivalence. 

1. Introduction 

The ‘hull’ of a percolation cluster is defined as the set of vacant nearest-neighbouring 
bonds of the cluster that can be joined by a continuous path from infinity without 
crossing the cluster. Mandelbrot (1982) introduced this term to describe the external 
perimeter of a cluster. The hull can be considered as the surface of a cluster and thus 
it may be related to the surface energy. 

Several attempts have been made to estimate the fractal dimension Dh of the hull 
at the percolation threshold. It has been conjectured that D h  is related to the percolation 
correlation length exponent v by Dh = 1 + 1/ v (Sapoval et a1 1985) (in two dimensions 
this gives D h  = z ) .  Ziff et a1 (1984) introduced a random walk algorithm to generate 
the hull of the site percolation cluster (without generating the actual percolation 
cluster). Gunn and Ortuno (1985) devised another walk algorithm which represents 
the hull of the bond percolation cluster on the square lattice at the percolation threshold. 
Numerical studies (Voss 1984, Weinrib and Trugman 1985, Ziff 1986, Grassberger 
1986) confirmed this conjecture in the two-dimensional case. Finally Saleur and 
Duplantier (1987) obtained the exact value of the hull dimension Dh = by mapping 
the two-dimensional percolation problem into a solvable Coulomb gas problem. 

Self-avoiding walks (SAW) (de Gennes 1979) form a subset of random walks in 
which no walk has visited a site more than once. These walks carry equal weights, as 
they are random walks. They are used as a model of linear polymers in dilute solution 
with excluded volume interaction. However, to represent a growing polymer the weight 
of a walk configuration should depend on the configuration itself. This is because at 
every stage of growth, the number of options determines the weight. Kinetic growth 
walks (KGW) (Majid et a1 1984, Hemmer and Hemmer 1984, Lyklema and Kremer 
1984) are an example of such growing walks. They consist of the same set of walks 
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as SAWS but each has a weight depending on its growth process. Specifically in this 
walk, the walker first determines the unvisited nearest-neighbour sites and then selects 
one of them randomly. The weight of each step is l/(number of allowed sites), while 
the weight of a walk is the product of the individual step weights. KGWS belong to 
the same universality class as ordinary SAWS (Peliti 1984, Pietronero 1985, Lyklema 
and Kremer 1986). Weinrib and Trugman (1985) introduced another growing walk 
and called it the smart kinetic walk (SKW).  Unlike SAWS and KGWS, this walk is never 
trapped. This makes SKWS create a new universality class, distinct from SAWS. In this 
case the walker first determines the unvisited neighbouring sites. From these sites only 
those which will never lead to any trapping situation are permitted. One of these sites 
is then chosen randomly for the next step. SKW rings in which the initial and final 
sites are the same are shown to corresponding precisely to the hull of the site percolation 
clusters on the triangular lattice at the percolation threshold on the dual honeycomb 
lattice (Weinrib and Trugman 1985). SKWS are also known by the alternative name 
indefinitely growing self-avoiding walks ( IGSAW) introduced by Kremer and Lyklema 
(1985). 

In this paper we consider KGWS on the Manhattan lattice and kinetic growth trails 
(KGTS) on the L lattice. We see that because of the directional properties of these 
lattices, KGWS and KGTS on these lattices behave similarly to SKWS, i.e. they are never 
trapped. The ‘smartness’ is thus a property of the lattice. In P 2 we show that kinetic 
growth walks on the Manhattan lattice are equivalent to the recently introduced hull 
percolation problem. In 0 3 we show that kinetic growth trails on the L lattice are 
equivalent to the bond percolation hulls on the square lattice at the percolation 
threshold. Section 4 contains our conclusion. 

2. Kinetic growth walks on the Manhattan lattice and hull percolation 

Recently Roux et a1 (1988) introduced a problem of random tiling in two dimensions 
that generates lines which are hulls of a ‘non-standard’ percolation model and called 
this problem ‘hull percolation’. It was shown that these lines obey the same statistics 
as hulls of ordinary percolation clusters. In that model they used tiles of two different 
types as shown in figure l (a) .  These are squares which have at the opposite corners 
quarters of a circle with radius equal to half of the length of the square and centred 
on opposite vertices. On one square the circles occupy left-top and right-bottom corners 
and on the other square they are placed at right-top and left-bottom corners. Now on 
a large square lattice every small square is filled with one of these two tiles with equal 
probability. By construction, the circles on the tiles at adjacent squares (squares having 
an edge common) form continuous lines. As a result, the whole lattice is filled up 
with closed lines of different lengths and open lines which both start and end at infinity. 

One such single line can be generated by deciding the orientation of the squares 
with equal probability only along the line being generated. When an already visited 
square is reached the line is continued through the remaining unvisited arc of the 
square and for this step no new decision needs to be taken as it is pre-ordained. 
Therefore the generating line has two possible options when a new square is reached, 
and only one option to continue when a previously visited square is encountered. 
Once one arc is traversed in a certain direction, the other arc will be traversed in 
the opposite direction, by construction. As a result, when such a path starts, its starting 
direction determines the directions in which all other lattice edges will be traversed. 
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Figure 1. ( a )  Two tiles with circles in opposite cor- 
ners. ( b )  Generation of a single line by the hull 
percolation process. Once it is started, the directions 
(inward or outward) in which all other bonds will 
be crossed is determined. ( c )  The possible stepping 
directions at each bond are shown. (d) The under- 
lying square lattice is deleted and the possible 
options are retained. The directions are the same as 
those on the Manhattan lattice. (e )  The Manhattan 
lattice: alternate rows (or columns) parallel, adjacent 
rows (or columns) antiparallel. 
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Two opposite sides of a square are crossed in the outward direction while the other 
two sides are crossed in the inward direction (see figure l ( b ) ) .  Each of these sides 
has two possible directions of crossing (see figure l ( c ) ) .  Now if we consider only 
these directions and forget the underlying lattice what we get is figure l ( d ) .  From this 
figure we see that the possible options are arranged exactly as allowed paths on a 
Manhattan lattice. 

On a Manhattan lattice alternate rows (or columns) are parallel, and adjacent rows 
(or columns) are antiparallel (see figure 1 (  e ) ) .  Self-avoiding walks on the Manhattan 
lattice were first studied by Malakis (1975). Numerical studies on this problem 
suggested that these walks belong to the same universality class as that of the ordinary 
SAWS (Malakis 1975, Enting and Guttmann 1985). When a self-avoiding walker on 
this lattice visits a neighbouring site to its previously visited path a cage is formed. 
On the square lattice the walker has to be ‘smart’ enough to find a path which will 
prevent it entering the cage. On the Manhattan lattice this is automatic. As two 
adjacent rows (or columns) are antiparallel, the walker has only one option for the 
next step which directs the walk outward. Because of this property, a KGW will not 
normally be trapped. The only situation in which this walker can be trapped is at a 
neighbouring site of the starting position, in which case it forms a loop. As a result, 
KGWS on the Manhattan lattice are also ‘smart’, and it is the directional property of 
the lattice which is responsible for this behaviour. We expect that unlike KGWS on 
regular lattices KGWS on the Manhattan lattice should behave in the same way as SKWS. 

Therefore we see that for hull percolation and KGWS on the Manhattan lattice, the 
generating line and the walker have two options in general, except when they fall on 
a site adjacent to a previously visited site, when there is only one option. They are 
never trapped except at the origin. From these similarities, we conclude that hull 
percolation and KGWS on the Manhattan lattice are the same. 

To establish this conclusion on a stronger basis we have studied this walk extensively 
by numerical methods. We enumerated exactly ordinary SAWS and KGWS on the 
Manhattan lattice up to 37 steps (see table 1 ) .  For ordinary SAWS this is nine terms 
further than the series data available in the literature (Malakis 1975). We analysed 
the series by the method of differential approximants, constructing first order 
inhomogeneous differential approximants precisely as described in Guttmann (1987). 
To save space we do not give our dozens of tables of data, but just report the conclusions. 

For the SAW generating function, we observe that, as the number of terms increases, 
so do the estimates of x,  and y. Using most or all terms gives estimates x,  = 0.576 82 
and y 3 1.330. Assuming that the increasing estimates of y have as their limit y = = 
1.343 75, which is the y value for SAWS on regular lattices, we find x, = 0.576 93. This 
is in agreement with the earlier estimate of Enting and Guttmann (1985). The sum of 
the squared end-to-end distance series gives x ,  = 0.576 78, y + 2v = 2.812. Again, there 
is an increasing trend of x ,  and y values with increasing numbers of terms. With 
x, = 0.576 93, the (biased) estimate of y + 2v increases to 2.840. With y = g, this yields 
v = 0.748. The mean square end-to-end distances (R&) for KGWS weighted by the 
individual configuration weights were analysed similarly, using the fact that the ‘critical 
point’ of the generating function Z(R%,)x“ is at 1 .  In this way, we obtained an 
exponent of 2.152, hence vKGW = 0.576. All exponent estimates are uncertain in the 
last quoted digit. The fourth column of table 1 gives the series data for the sum of 
the weights of all N-step KGW configurations, which we denote w N .  

We have also studied KGWS by Monte Carlo methods in two different ways. We 
simulated one million configurations for each of walk lengths N = 16, 20, 24, 32, 40, 
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Table 1. Series data for the number of distinct configurations (C,), sum of the squares 
of end-to-end distances ( R h )  for SAWS, the mean square end-to-end distances ( (R2Nw)) ,  
and the total weight ( W,) for KGWS on the Manhattan lattice. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

1 
2 
4 
7 

13 
24 
44 
77 

139 
250 
450 
788 

1403 
2 498 
4 447 
7 782 

13 769 
24 363 
43 106 
75 396 

132 865 
234 171 
412 731 
721 433 

1 267 901 
2 228 666 
3 917 654 
6 843 596 

12 004 150 
21 059 478 
36 947 904 
64 506 130 

112 983 428 
197 921 386 
346 735 329 
605 046 571 

1058 544 744 

1 
6 

20 
56 

141 
328 
732 

1584 
3 339 
6 894 

14 018 
28 132 
55 819 

109 668 
213 711 
413 520 
795 041 

1 519 632 
2 890 050 
5 471 864 

10317 249 
19 378 344 
36 273 795 
67 690 580 

125 950 933 
233 715 516 
432 618 758 
798 985 468 

1 472 443 438 
2708024388 
4971153360 
9109787516 

16666330020 
30442830024 
55525884185 

101 137 051 948 
183972829656 

1 .OOO 000 0000 E + 00 
3.000 000 0000 E + 00 
5.000 000 0000 E + 00 
7.250 000 0000 E + 00 
9.500 000 0000 E + 00 
1.1 50 000 0000 E + 01 
1.3562500000 E+01 
1.624 193 5483 E+Ol 
1.845 161 2903 E+01 
2.062 500 0000 E + 01 
2.282 661 2903 E+01 
2.567 252 0661 E+01 
2.797 107 4380 E+01 
3.024328 5123 E+01 
3.250 258 2644 E + 01 
3.561 2645348 E+01 
3.798 1104651 E+01 
4.03 1 355 7082 E + 01 
4.264 762 8171 E+01 
4.589 130 7276 E+01 
4.830715 0194 E+01 
5.070 154 5475 E+01 
5.309 476 3021 E + 0 1  
5.648 466 8808 E+01 
5.895 0609906 E+01 
6.139 817 2690 E+01 
6.384 399 8795 E+01 
6.733 037 5464 E +  01 
6.984 032 7877 E + 01 
7.233411 4264 E+01 
7.482 624 3431 E+01 
7.841 342 5632 E+01 
8.096 351 0414 E+01 
8.349 961 4208 E+01 
8.603 399 2446 E+01 
8.970 239 3834 E+01 
9.228 939 2120 E+01 

5.000 000 0000 E - 01 
5.0000000000 E-01 
5.000 000 0000 E -01 
5.0000000000 E-01 
5.000 000 0000 E - 01 
5.000 000 0000 E - 01 
5.000 000 0000 E - 01 
4.843 750 0000 E - 01 
4.843 750 0000 E - 01 
4.843 7500000 E-01 
4.843 7500000 E-01 
4.726 562 5000 E -01 
4.726 562 5000 E - 01 
4.726 562 5000 E - 01 
4.726 562 5000 E - 01 
4.619 140 6250 E - 01 
4.619 1406250 E-01 
4.619 1406250 E-01 
4.619 1406250 E-01 
4.530 563 3544 E -01 
4.530 563 3544 E -01 
4.530 563 3544 E -01 
4.530 563 3544 E-01 
4.452 466 9647 E - 01 
4.452 466 9647 E - 01 
4.452 466 9647 E -01 
4.452 466 9647 E-01 
4.384 962 3203 E -01 
4.384 962 3203 E - 01 
4.384 962 3203 E - 01 
4.384 962 3203 E - 01 
4.324 709 6426 E - 01 
4.324 790 6426 E - 01 
4.324 709 6426 E - 01 
4.324 709 6426 E - 01 
4.270 777 1644 E-01 
4.270 777 1644 E-01 

48,. . . , 320, 384, 512. We fit the mean square end-to-end distances ( R L )  to a form 
N 2 ” ~ o w .  A log-log plot of ( R L )  against N gives the value of v K G W =  0.573 (see figure 
2). In the second method we study kinetic growth walk loops. On an L x L lattice (L 
even) the walker starts from a site near the centre and walking is continued until it 
revists the origin. With toroidal boundary conditions on this lattice we considered 
those walk configurations which have visited the four boundaries at least once. The 
lattice sizes were L= 16, 20, 24, 32, 40, 48,. . . , 160, 192, 256, and the number of 
configurations at each size was varied from 50 000 to 100 000. We fitted the average 
loop length (P,) to a form (P,) - L D ~ ~ w  where D K G W  denotes the fractal dimension of 
the KGWS. A log-log plot of (P,) against L gives a value of D K G W =  1.74 (see figure 2). 
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Figure 2. On a log-log plot, points denoted by (0) correspond to (PL) for KGW on the 
Manhattan lattice, points denoted (0) correspond to (PL)  against L for KGT on the L 
lattice, points denoted (A)  correspond to ( R L )  against N for KGW on the Manhattan 
lattice, while points denoted (A) correspond to ( R L )  against N for KGT on the L lattice. 

We have also studied indefinitely growing self-avoiding walks on the Manhattan 
lattice up to a walk length N = 36. The number of distinct configurations CN and the 
mean square end-to-end distances ( R k W )  are given in table 2. We have analysed these 
in the same manner as we analysed the Manhattan lattice data. Here too we found a 
steady, increasing trend of estimates of x, and y with the number of coefficients used. 
The last entries gave x,=O.57684 and y =  1.333. Assuming y = g  as above gave 
xc= 0.576 92. Analysis of the generating function X(Rkw)x" biased at xc= 1 gave 
Y = 0.566. To confirm that the exponents vKGW( Manhattan) = vIGSAW( Manhattan) we 
studied the ratio r,, = (Rkw)KGw/(R~w)IGsAw using the method of Guttmann (1985). 
Assuming r,, - N", we first form the sequence 4N = l ~ ~ ( r ~ / r ~ - ~ ) / l n ( N / N  -4) )  which 
gives estimates of the exponent x, and accounts for the four-term periodicity of terms 
associated with the Manhattan lattice. Linear extrapolants of the squence 4N are given 
by the sequence O N ,  defined by 8 N  = [ N4N - ( N  -4)4+4]/4. From these sequences 
we estimate 1x1 to be less than 0.004. This shows convincingly that KGWS on the 
Manhattan lattice belong to the SKW universality class. 

3. Kinetic growth trails on the L lattice and percolation hull 

Gunn and Ortuno (1985) studied a model of deterministic classical dynamics in a 
random environment and related it to a generalised form of percolation. The model 
is defined as follows. On a square lattice, a rotation matrix R ( 8 )  is associated with 
each site. The angle of rotation 8 may take four different values namely 0, ~ / 2 ,  T 

and - ~ / 2 .  The angular variables at different sites are assigned randomly from a 
probability distribution p ( 8 ) .  Random walks are considered on such a lattice. The 
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Table 2. Series data for the number of distinct configurations (C,) and the mean square 
end-to-end distances ((RZw)) for IGSAWS on the Manhattan lattice. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
3s 
36 

1 
2 
4 
7 

13 
24 
43 
77 

139 
249 
443 
786 

1 400 
2 486 
4 395 
7 758 

13 732 
24251 
42 710 
75 154 

132 487 
233 173 
409 617 
719 157 

1 264 303 
2 219 916 
3 892 603 
6 822 808 

11 970 965 
20 983 162 
36 742 831 
64319064 

112 682 333 
197 256 386 
345 033 765 
603 376 033 

1 .OOO 000 000 00 E + 00 
3.000 000 000 00 E + 00 
5.000 000 OOO 00 E+OO 
7.250 000 000 00 E + 00 
9.500 000 000 00 E + 00 
1.150 000 000 00 E + 01 
1.36875000000E+01 
1.601 56250000E+01 
1.821 875 000 00 E+01 
2.042 578 125 00 E+01 
2.27500000000E+01 
2.510351 562 50 E+01 
2.744335 937 50 E+01 
2.977 758 789 06 E+01 
3.215 136 718 75 E+01 
3.45814208984E+Ol 
3.70024414062E+01 
3.940 536 499 02 E+01 
4.18533477783 E+01 
4.43403472900E+01 
4.681 660461 42 E+01 
4.928 848 457 33 E +01 
5.179 501 152 03 E+01 
5.433 085 918 42 E+01 
5.686 174 15428 3+01 
5.939 038 574 69 E+01 
6.194674378 63 E+01 
6.452 844 782 17 E + 01 
6.710737 723 11 E+01 
6.968 471 668 28 E+01 
7.228612907 23 E+01 
7.490943 145 00 E+01 
7.753 087 267 46 E + 01 
8.015 208 492 94 E+01 
8.279411 694 12 E+01 
8.545 521 281 08 E+01 

walker starts from an arbitrarily chosen site of the lattice with an arbitrarily chosen 
direction. At every site visited by the random walker the rotation matrix at that site 
rotates the incoming direction into the outgoing direction. These trajectories are either 
infinite (i.e. starting and ending at infinity) or cyclic. 

Consider the particular case of the probability distribution P ( n - / 2 )  = P ( - v / 2 )  = f  
and P(0)  = P (  n-) = 0. The paths generated by this distribution are the perimeters of 
bond percolation clusters on the square lattice at the percolation threshold. The 
argument for this result is outlined by Gunn and Ortuno (1985). Paths generated by 
the above probability distribution must turn left or right at each step. Any site on such 
a path may be revisited only by a step in the same direction (but opposite sense) as 
the previously visiting step. If barriers are drawn diagonally across the sites visited 
by the trajectory, then the cluster of barriers enclosed by the trajectories represent the 
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Figure 3. ( a )  The path of a random walk generated by the algorithm of Gunn and Ortuno 
(thin line with arrows on it) which is the perimeter of the bond percolation cluster (bold 
line). ( b )  The L lattice: every bond on a path is at right angles to its predecessor. 

percolation clusters at the percolation threshold, and the trajectory is its hull (see 
figure 3(a)) .  A single such trajectory can be generated on a pure square lattice by a 
random walker which turns either left or right at every step and remembers the direction 
turned at every point. When a previously visited site is revisited, the same rotation is 
made as at the previous visit. Walking is continued until it terminates by revisiting 
the starting step. In this case the walker always has two options for the next step, 
except when it revisits a site, in which case it has only one option. Grassberger (1986) 
used this method to estimate the fractal dimension of the percolatuion hull, and 
obtained Dh = 1.750* 0.002. 

A lattice trail is a random walk in which no bond of the lattice is visited twice 
(Malakis 1975). It has been seen that these walks belong to the universality class of 
ordinary SAWS (Malakis 1975, Guttmann and Osborn 1988, Guttmann and Manna 
1989). In kinetic growth trails the walker first determines the unvisited bonds emanating 
from its present position, and then chooses one of them randomly. This walk has been 
studied under a different name as the growing self-avoiding trail and was seen to 
belong to a different universality class from ordinary SAWS or lattice trails (Lyklema 
1985). 

Consider now an L lattice as shown in figure 3(b). It is a square lattice in which 
every bond on a path must be at right angles to its predecessor. KGTS on this lattice 
will satisfy the following properties: they will turn left or right at every step, visit a 
site at most twice and stop when there is no option for the next step (this happens 
only at the origin). These are exactly the same properties as the hull of a bond 
percolation cluster has on square lattice at the percolation threshold as described 
above. Therefore kinetic growth trails on the L lattice should obey the same statistics 
as that of the bond percolation hulls on the square lattice. 

To establish this equivalence numerically we enumerated exactly ordinary trails 
and kinetic growth trails on the L lattice up to 37 steps (see table 3). Malakis (1976) 
pointed out that there is a one-to-one mapping from the set of N step trails on the L 
lattice on to the set of ( N  - 1)-step SAWS on the Manhattan lattice. We find that CN 
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Table 3. Series data for the sum of the squares of end-to-end distances ( R : )  for SAWS 

and the mean square end-to-end distances ( ( R k w ) )  for KGTS on the L lattice. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

1 
4 

12 
32 
78 

180 
400 
864 

1818 
3 756 
7 644 

15 360 
30 504 
60 012 

117 108 
226 912 
436 764 
835 940 

1 591 790 
3 017 408 
5 695 448 

10 709 604 
20 068 182 
37 487 152 
69 816 450 

129 674 484 
240 246 868 
444 079 488 
819 036 168 

1507514552 
2769437312 
5078729888 
9297786596 

16994815856 
31017310020 
56530874800 

102891837550 

1.000 000 0000 E + 00 
2.000 000 0000 E + 00 
3.000 000 0000 E + 00 
4.000 000 0000 E + 00 
5.000 000 0000 E +00 
6.000 000 0000 E + 00 
7.000 000 0000 E + 00 
8.062 500 0000 E + 00 
9.387 096 7741 E+OO 
1.045 161 2903 E+01 
1.155 645 1612 E+01 
1.2649193548 E+01 
1.407 438 0165 E+01 
1.521 2809917 E+01 
1.634297 5206 E+01 
1.746849 1735 E+01 
1.9040169133 E+01 
2.020613 1078 E+01 
2.136931 8181 E+01 
2.253 689 8784 E + 01 
2.416 940 8753 E + 01 
2.536 578 6504 E+01 
2.656 096 0207 E+01 
2.7756160222 E + 0 1  
2.946 308 8621 E+01 
3.068 657 1352 E+01 
3.190810 1204 E+01 
3.312 984 7255 E+01 
3.488423 1561 E+01 
3.613 121 3039 E+01 
3.737 580 7005 E + 01 
3.862 113 1263 E+01 
4.042 523 7924 E + 01 
4.169 330 8319 E+Ol 
4.295 9367751 E + 0 1  
4.422 511 2589 E+01 
4.606 985 6278 E + 01 

for trails on the L lattice is twice CN-, for SAWS on the Manhattan lattice. The data 
for the sum of the mean square end-to-end distances ( R k )  was analysed as above. 
With a critical point of 0.576 92, we find 2v + y = 2.844, and hence the value of v is 
0.751. The generating function for the mean square end-to-end distances ((RLW)) for 
kinetic growth trails weighted by the weights of the configurations was analysed 
similarly, biased at x, = 1, and we obtained the value of vKGT = 0.578. We find the 
weights wN for trails on the L lattice to be exactly equal to w N - ,  for SAWS on the 
Manhattan lattice, reflecting the known mapping between those two problems (Malakis 
1975). 

In a Monte Carlo study of kinetic growth trails, we simulated one million configur- 
ations for walks of length N = 16, 20, 24, 32, 40, 48,.  . . , 320, 384, 512. We fitted the 
mean square end-to-end distances (Rk) to a form N * ’ K ~ w .  A log-log plot of (RL) 
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against N gave the value of vKGT = 0.576 (see figure 2). Utilising a second method, 
we studied kinetic growth trail loops in the same way as kinetic growth walks. The 
lattice size was varied as L = 16, 20, 24, 32, 40, 48,. . . , 160, 192, 256 and the number 
of configurations were varied from 20 000 to 100 000. We fitted the average loop length 
( PL) to a form ( PL) - L D ~ ~ ~ .  A log-log plot of ( PL) against L gives a value of DKGT = 1.77 
(see figure 2). 

4. Conclusion 

In this paper we have studied kinetic growth walks on the Manhattan lattice and kinetic 
growth trails on the L lattice. Because of the directional properties of these lattices, 
these walks are never trapped except at the origin of the lattice. Therefore these walks 
are expected to belong to the smart kinetic walk universality class rather than to the 
ordinary SAW universality class. Extensive numerical calculations by both exact 
enumeration and Monte Carlo methods show strong evidence that these walks indeed 
belong to the SKW universality class. Moreover it has been shown that the recently 
introduced hull percolation is equivalent to kinetic growth walks on the Manhattan 
lattice and the hull of bond percolation clusters on the square lattice at the percolation 
threshold is equivalent to kinetic growth trails on the L lattice. 
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